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We study theoretically the linear Saffman-Taylor instability for non-Newtonian fluids in a Hele-Shaw cell.
After introducing the notion of generalized Newtonian fluid we calculate the associated Darcy’s law. We derive
the relation governing the growth rate of normal modes for a large class of non-Newtonian flows. For shear-
thinning fluids at high shear rate our theory provides Darcy’s laws free of the nonphysical divergences appear-
ing in the classical approaches. We characterize fluids which develop instabilities faster than Newtonian fluids
under the same hydrodynamical conditions. Another primary result that this paper provides is that for some
shear-thickening fluids, all normal modes are stable.
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I. INTRODUCTION

The study of the formation and evolution of dynamical
structures is one of the most exciting and active areas of
nonlinear sciences. Pattern formation is one aspect of these
dynamical structures and it is present in many areas of phys-
ics. Our attention here will be focused on hydrodynamics
and more specifically in the evolution of interfaces. One of
the best studied cases is that of patterns formed by the inter-
face between two fluids of different viscosities. An interfa-
cial instability arises when the more viscous fluid is dis-
placed by the less viscous one in a very narrow gap between
two parallel plates. This geometry is called a Hele-Shaw cell
and the phenomenon is nowadays known as the Saffman-
Taylor instability �1–4�. This instability has been extensively
studied both theoretically and experimentally. Most of the
studies refer to the case of Newtonian fluids and pattern for-
mation for these flows are at present more quite well under-
stood.

The Saffman-Taylor instability may also arise when one
or both fluids are complex such as liquid crystals �5,6�, poly-
mer solutions and melts �7�, clays �8�, and foams. The pat-
tern dynamics of these flows is at present poorly understood.
Numerous experiments have been performed �9–13�, as this
problem is of considerable technological and economical im-
portance �oil recovery, injection molding, and device display
design�. Analytical and/or numerical works have successfully
related rheological properties of fluids �such as shear thin-
ning or shear thickening� to pattern formation �14–17�. How-
ever a general theoretical framework is still lacking.

The aim of the present paper is to derive a more accurate
theory than the previous ones �14,16,17�. This paper is orga-
nized as follows. In Sec. II we recall the notion of general-
ized Newtonian fluid �GNF�, whereupon our formalism re-
lies. Next in Sec. III A we introduce a generalized Darcy law
and in Sec. III B we perform the linear stability analysis. The

analysis leads to a very general relation wave-number/
growth ratio. This allows us to predict how �linear� stability
or instability is affected by the rheological properties for a
large class of GNF. In Secs. IV A–IV C we investigate the
particular cases of GNF.

II. PRELIMINARY DISCUSSION

A GNF is a fluid whose constitutive equation can be writ-
ten as �18,19�

� = 2��S�D with S = 2 tr�D2� , �1�

where � is the shear stress, D= ��v+�vT� /2 is the rate of
strain tensor, and � is the viscosity. Equation �1� gives the
relation between the strain and the stress of the fluid. This is
in any case an approximation whose validity depends on the
flow.

In general when a viscoelastic fluid characterized by a
relaxation time � is placed in a Hele-Shaw cell whose plate
separation is b, it is displaced at a rate corresponding to a
very small Weissenberg number We �We=U� /b with U as
the lateral characteristic velocity�. In this case the elastic
nature of the fluid will not show up, and it will behave as a
purely shear-thinning or shear-thickening fluid, just as it
were a GNF. This is true provided the flow is not so slow as
to inhibit the non-Newtonian aspects.

In �17�, Fast et al. theoretically studied the Saffman-
Taylor instability for a standard viscoelastic fluid model �the
Johnson-Segalman-Oldroyed model which is a generaliza-
tion of the Oldroyd-B model�. The authors have shown that
in a thin gap cell, there is a distinguished limit �small Weis-
senberg number� where shear-thinning or shear-thickening as
well as normal stress differences are apparent, but elastic
response is negligible. So under certain assumptions, a flow
of a complex viscoelastic fluid in a Hele-Shaw cell turns out
to be adequately described by the flow of a GNF, entailing a
simpler description. It was found in �17� that in the weakly
non-Newtonian limit shear thinning decreases the wave num-
ber of maximum growth, increases the maximum growth
rate, and tightens the band of unstable modes. For shear-
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thickening fluids, the results are reversed; the growth rate for
the wave number of maximum growth is decreased and the
wave numbers of maximum and critical growth are in-
creased. But in the general case of a non-Newtonian fluid
�i.e., not necessarily weakly non-Newtonian�, no explicit
general expression for the growth rate was found.

III. DISPERSION RELATION FOR THE INSTABILITY
INVOLVING ANY GENERALIZED

NEWTONIAN FLUID

A. Generalized Darcy law

We consider a single fluid flowing in a rectangular Hele-
Shaw cell formed by two parallel plates separated by a nar-
row gap of thickness b �Fig. 1�. The relation between mean
velocity and pressure is given by Darcy’s law. In the New-
tonian case it reads

�v�x,y,z�� = b2 � P�x,y�/�12�� , �2�

where � is the viscosity, P�x ,y� is the pressure, and �v� is the
velocity averaged over the gap b. Note that neither
�P�x ,y� / �12�� nor �v� have to be constant with respect to x
or y. In order to study the Saffman-Taylor instability for
GNF, it is necessary to generalize the Darcy law for these
fluids.

From the linearized and steady Navier-Stokes equations
we have

�P

�xi
=

�

�xk��� �vk

�xi +
�vi

�xk	
 , �3�

where � is the generalized viscosity defined by the constitu-
tive equation Eq. �1� and �x1 ,x2 ,x3�= �x ,y ,z�. Owing to the
smallness of the plate separation b one can use the approxi-
mations �

�x , �
�y �

�
�z to obtain

�P

�x
=

�

�z
��

�vx

�z

 , �4�

�P

�y
=

�

�z
��

�vy

�z

 . �5�

Integrating with respect to z and taking the integration con-
stants equal to zero �by considerations of symmetry�, we find

�� �vx

�z
,
�vy

�z
	 �vx

�z
=

�P

�x
z , �6�

�� �vx

�z
,
�vy

�z
	 �vy

�z
=

�P

�y
z . �7�

It then appears that vx and vy are the solutions of two
coupled differential equations where the independent vari-

able is z. In these equations, �P /�x and �P /�y do not depend
on z. They are just parameters and one can draw the conclu-
sion that vx and vy depend only on z, �P /�x, and �P /�y.
Upon averaging over z implies that the average velocity �v�
is a function of �P /�x and �P /�y. Finally, we remark that the
relation between �v� and �P has to be isotropic. Therefore,
our ansatz is that a generalized Darcy ’s law can then be
written for a GNF as

�v� = − V���P��
�P

��P�
. �8�

The function V depends on the behavior of the GNF. In the
particular case of a Newtonian fluid we have

V���P�� = ��P�b2/�12�� . �9�

The generalized Darcy’s law �Eq. �8�� is similar to the
generalized Darcy’s law of �17,20,21�. Although the physical
bases are the same, we have not, in the present paper, tried to
insert explicitly the shear-rate dependence of the viscosity in
the generalized Darcy’s law. It will be shown, in the follow-
ing, that function V���P�� �which can be computed using the
expression of the shear-rate-dependent viscosity, see Sec. IV�
contains all the information needed to predict analytically the
stability of an interface in a Hele-Shaw cell without restric-
tion, contrary to the previous derivations.

We can see in Eq. �8� that � ·v=0 does not imply �P
=0. In general for a GNF we have

�P � 0. �10�

The lacking of P to satisfy a Laplace equation is the central
problem in the linear analysis of the Saffman-Taylor insta-
bility �22,23�.

B. Linear stability analysis

Let us consider the linear stability of Eq. �8�. The initial
unperturbed state is a two-fluid flow system GNF�1� and
GNF�2�. GNF�2� is driven out by GNF�1� via a superim-
posed constant pressure gradient along the axis Ox. Unper-
turbed pressures and mean velocities are noted by Po,j and
vo,j, and are given by

�Po,j

�x
= − Gj , �11�

�vo,j� = V�Gj� with j = 1,2, �12�

where G1 and G2 are positive constants. Deviations from this
almost flat initial interface are obtained by adding small per-
turbations,

Pj
��x,y,t�, j = 1,2 �13�

to the initial pressure gradient. In turn, this causes perturba-
tions to the initial velocities which are denoted by

v j
��x,y,t�, j = 1,2. �14�

So the perturbed pressures and mean perturbed velocities are
given by

w

b

viscous fluid

displacement

y

x

FIG. 1. Sketch of the Hele-Shaw cell. Definition of the axis for
the stability analysis.
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Pj�x,y,t� = Po,j + Pj
��x,y,t� , �15�

�v j� = �vo,j� + �v j
��x,y,t�� . �16�

The fluid is incompressible, that is to say

�v1� = �v2� . �17�

Let the perturbations to the pressure be

Pj
��x,y,t� = �Aj�x,t�cos�ky� with � � 1. �18�

The pressure gradients are at order �,

�Pj

��Pj�
= �− 1

− �
kAj sin�ky�

Gi
 . �19�

We then obtain the mean velocities by application of the
generalized Darcy’s law,

�vxj
� � = − �

�Aj

�x
cos�ky�V j��Gj� ,

�vyj
� � = �

kAj sin�ky�
Gi

V j�Gj� . �20�

The incompressibility of the fluids �� ·v�=0� yields

−
�2Aj

�x2 V j��Gj� + Aj
k2

Gj
V j�Gj� = 0, �21�

and then

� j
2�2Aj

�x2 − k2Aj = 0, where � j
2 =

Gj

V j

dV j

dGj
. �22�

C. The different cases according to the sign of �

The solutions of Eq. �22� depend strongly of the sign of
� j

2. Let us consider first of all the case � j
2�0. Since the

perturbation must not diverge for x→ 	
, one obtains for
the perturbation of the pressure

P1
��x,y ;t� = �B̃1�t�ek/�1�x−�0� cos�ky� ,

P2
��x,y ;t� = �Ã2�t�e−k/�2�x−�0� cos�ky� , �23�

where �0 is a constant. We now choose for �0 the basic po-
sition of the interface, �0= �v01�t= �v02�t. The position of the
disturbed interface is x=�0+���y ; t�. The continuity of the
normal components of the velocity at the interface can be
approximated in the limit of small deformations by the con-
tinuity of the velocities along Ox,

���0 + ���
�t

= �vx1���0 + ��� = �vx2���0 + ��� , �24�

keeping only the first-order terms

���

�t
= ��Ã2

k

�2
V2��G2��

Ẋ�t�

cos�ky� .
�25�

One can thus infer that ���y ; t� can be written as

���y ;t� = �X�t�cos�ky� , �26�

with

Ẋ�t� = − B̃1
k

�1
V1��G1� = Ã2

k

�2
V2��G2� . �27�

Using the definition of �i in Eq. �27� one obtains

Ẋ�t� = − kB̃1�V1

G1

dV1

dG1
= kÃ2�V2

G2

dV2

dG2
. �28�

The formulation of the problem is completed by the inter-
facial effects due to capillarity. They create a pressure jump
�P= P2− P1 given by Laplace’s law across the two sides of a
curved interface,

�P = ��1 + �2� , �29�

where  is the surface tension and �1 and �2 are the two
main curvatures of the interface. We have

�P = ��G1 − G2�X�t� + Ã2�t� − B̃1�t��� cos�ky� . �30�

The curvature of the interface perpendicular to the plane of
the cell �2 is of the order of �2�2 /b and constant along the
interface, so that its dynamical effect can be neglected. Only
the curvature in the plane of the cells is taken into account.
We can write

�P = − k2 �X�t�cos�ky� , �31�

and then

Ã2�t� − B̃1�t� = ��G2 − G1� − k2�X�t� . �32�

Now, from Eqs. �28� and �32�, the equation for X�t� is

dX

dt
=

�G2 − G1 − k2�k

�G2

V2

dG2

dV2
+ �G1

V1

dG1

dV1

X�t� . �33�

Therefore the solution X�t� is

X = X0 exp��i� + M�t� , �34�

from Eq. �33� we obtain

� = 0,

M =
�G2 − G1 − k2�k

�G2

V2

dG2

dV2
+ �G1

V1

dG1

dV1

. �35�

This relation is one of the main result of this paper. It gives
the amplification rate as a function of the wave vector k for
any GNF for which V can be computed.

It should be noted that within the limit of Newtonian flu-
ids V j�G�→ Gb2

12�0j
��0j is the viscosity of fluid j�, we find the

well-known wave vector dependence of the amplification
rate for Newtonian fluids,

SAFFMAN-TAYLOR INSTABILITY FOR GENERALIZED… PHYSICAL REVIEW E 80, 016308 �2009�

016308-3



M =
1

�02 + �01

kb2

12
�G2 − G1 − k2� . �36�

Suppose now that � j
2�0 for j=1,2. We have shown �see the

Appendix for details� that in this case the perturbation to the
surface ���y ; t� is stable, i.e., the amplification rate is zero. It
oscillates in time with frequency �see Eq. �A11� in the Ap-
pendix�,

� =
�G1 − G2 + k2�k

��G2

V2
�� dG2

dV2
� − ��G1

V1
�� dG1

dV1
�
. �37�

The mixed cases were also studied �see the Appendix for
details�. We were able to calculate the amplification rate
and/or the oscillatory frequency explicitly. For example, in
the limit case of air being pushed by a highly shear-
thickening fluid ��1

2�0 �air�, �2
2�0 �shear-thickening

fluid��, we have found that the amplification rate goes to zero
and ���y ; t� oscillates with the limit frequency �see Eq. �A20�
in the Appendix�,

� =
�G2 − G1 − k2�k

��G2

V2
�� dG2

dV2
�

. �38�

IV. APPLICATION FOR PARTICULAR FLUIDS

In order to investigate the Saffman-Taylor instability for
particular GNF, we calculate the function V��P� in the case
of a purely unidirectional Poiseuille flow in a Hele-Shaw cell
�Fig. 2�. Since it has been demonstrated that V��P� depends
only on �P, the expression of V will be valid even if the flow
is not unidirectional. For a homogeneous pressure gradient
Px along the x axis, the x component of the velocity can be
calculated for a GNF following Kondic et al. �20,21� �no slip
condition at the top and bottom edges of the channel�,

vx�z� =
1

Px
�

�=b/2Px

�=zPx

̇d� . �39�

In this equation ̇ is the shear rate defined as

̇ =
�vx

�z
, �40�

and � is the shear stress. The relation between � and ̇ fully
characterizes the GNF �since the function � in Eq. �1� is
equal to � / ̇�. It is given by a flow curve obtained by purely
steady rheological experiments. Let us now use Eq. �39� to
compute V.

A. General expression for shear-thinning fluids

We suppose that the relation between � and ̇ can be
written as �18�

̇ =
�

�0
�1 + �

n=1


 � �

�n
	2n
 =

�

�0
�
n=0


 � �

�n
	2n

. �41�

First let � be small; ���n for all n. Equation �41� becomes
̇=� /�0. Since the viscosity if defined by the ratio between
the stress � and the shear rate ̇ �18�, it appears that �0 is the
zero-shear viscosity of the fluid. For a higher value of �, the
ratio � / ̇ decreases, so the fluid is shear thinning. Using Eq.
�39� we obtain

v�z� = �
n=0



Px

2n+1

�2n + 2��0�n
2n�z2n+2 −

b2n+2

22n+2	 , �42�

the mean velocity is

�v� = �
n=0



1

2n + 3

Px
2n+1

�0�n
2n�b

2
	2n+2

, �43�

and then

V��P� = − �
n=0



1

2n + 3

��P�2n+1

�0�n
2n �b

2
	2n+2

. �44�

B. Power law at high shear rate

In the case where

̇ =
�

�0
�1 + � �

�n
	2n
 , �45�

with �0 being the zero-shear viscosity �viscosity for small
shear rates� we find �from Eq. �44��

�v� = −
Pxb

2

12�0
�1 +

3

3 + 2n
�Pxb

2�n
	2n
 . �46�

Two particular cases may be investigated.
�1� Newtonian fluid �n=
, and Eq. �46� is the well-

known Darcy law for Newtonian fluids.
�2� The Ostwald–de Waele power-law fluids whose vis-

cosity can be written as

��̇� = k1̇m−1, �47�

and thus, for the constitutive equation,

� = k1̇m or ̇ = � �

k1
	1/m

. �48�

Linear analysis of the Saffman-Taylor instability has been
studied for such GNF �14� because of the large amount of
fluids that are well modeled by this constitutive equation at
large shear rate �24�.

A fundamental problem with this model for GNF is that it
exhibits a nonphysical divergence at low shear rate ��→
�.
Since low shear rates are necessarily present in the unper-
turbed Hele-Shaw velocity profile �zero-shear rate at z=0�, a

z=b/2

z=−b/2

z
y

x U

FIG. 2. �Color online� Steady unidirectional Poiseuille flow. The
channel has a width in the z direction of b. Velocity is parallel to the
x direction and depends only on z.
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theory where no nonphysical divergence appears is needed.
The comparison with the expression of Eq. �45� shows

that asymptotic behaviors for high shear rates �or equiva-
lently high stresses� are the same with

m =
1

2n + 1
and k1 = ��0�n

2n�1/�2n+1�. �49�

So, our theory can address the problem of the Ostwald–de
Waele fluids without any unphysical divergence. Figure 3
clearly shows that Eq. �45� fits well real fluids such as poly-
mer solutions when Eq. �48� failed.

Darcy’s laws computed from Eq. �45� �see Eq. �46�� or
from Eq. �48� are given in Fig. 4. We now consider the
experimental situation where a gas forces a GNF described
by Eq. �45� into motion. What happens to the amplification
rate due to the non-Newtonian properties of this kind of
GNF? Does some wavelength become unstable compared
with the case of a Newtonian fluid? In which way? In order
to answer these important questions, let us calculate the am-
plification rate. From Eqs. �35� and �46�,

M = k�G2 − k2��V2

G2

dV2

dG2
, �50�

M =
b2

12�0
k�G2 − k2�

���3�2n + 1�
2n + 3

�G2b

2�n
	2n

+ 1	
��� 3

2n + 3
�G2b

2�n
	2n

+ 1	 , �51�

=k�G2 − k2�
V
G2
�2n + 3 + 6n�G2b

2�n
�2n

2n + 3 + 3�G2b

2�n
�2n ,

�52�

Equations �51� and �52� have to be compared to the case of a
purely Newtonian fluid �of viscosity �0� for which

M =
V
G2

k�G2 − k� , �53�

=
b2

12�0
k�G2 − k� . �54�

The comparison between Eqs. �51� and �54� show that the
growth rate is larger in the case of a GNF described by Eq.
�45� than the growth rate for a Newtonian fluid, with the two
fluids having the same zero-shear viscosity. The range of
pressure gradient for which the instability occurs is exactly
the same in both cases. This result has been predicted by
earlier theories �17�. Its physical explanation is simple, re-
marking that for a Newtonian fluid the growth rate increases
for decreasing viscosities and since the viscosity decreases
from the zero-shear viscosity as the shear increases for the
GNF we consider, it is straightforward to draw the conclu-
sion that the growth rate is larger for the GNF.

Let us now have a look at a more interesting situation. We
want to compare the growth rate of the GNF and the New-
tonian fluid, with the average velocities being equal. The
viscosity of the Newtonian fluid is chosen so that the pres-
sure gradients are equal. So, in these two situations, pressure
gradients and averaged velocities are the same. But the com-
parison between Eqs. �52� and �53� shows that the two
growth rates are not equal even if stable and unstable wave
vectors are the same. To be more precise, the growth rate is
larger in the case of the GNF if n�1 /2, and it is smaller in
the opposite case. To conclude, only GNF with high n expo-
nent �n�1 /2� tend to develop the instability faster than a
Newtonian fluid in the same hydrodynamical condition
�given by G and �v��.

C. Highly shear-thickening fluids

The relation between ̇ and � is nonmonotonic for some
very shear-thickening fluids �25,26� �see Fig. 5�. We will
show that in this case V may be a nonmonotonic function of

.

γ̇ (s−1)

η
(P

a
s)

10210110−110−210−3

10

1

10−1

FIG. 3. Viscosity as a function of shear rate of a Xanthan solu-
tion �measured with a Contraves low shear Couette rheometer�. The
experimental viscosity �circles� is approximately constant �zero-
shear viscosity� for �1, whereas its decrease is well described
using a power law for �2 �solid line�. Viscosity calculated from
Eq. �45� fit well the data in the full range of  �dashed line�.

power law
Complete expression

.

b
σn

× G

1
2
η
0

b2
σ

n

×
<

v
>

1001010.10.01

106

103

1

10−3

10−6

FIG. 4. Darcy’s laws for to different models of GNF: for an
Ostwald–de Waele power-law fluid �with m=0.3� and for a fluid
whose constitutive equation is given by Eq. �45�. The parameters
are chosen so that the fluids have the same high shear-rate behavior.
The nonphysical divergence of the viscosity for the Ostwald–de
Waele power-law fluid leads to a deviation in the Darcy’s law
�dashed line�. The right Darcy’s law �solid line� needs to be used in
order to study Saffman-Taylor instability.
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G with a range of pressure gradient where dV /dG�0. In the
case, the grow rate for the Saffman-Taylor instability is
purely imaginary and then the interface is stable.

Let us consider a shear-thickening fluid for which �see
Fig. 5�

̇��� =
1

�0

�

�� �
�0

�2 + 1�2 +
�

�1
. �55�

This fluid is so shear thickening that the flow curve is non-
monotonic. With G=−Px and X=Gb / �2�0� the generalized
Darcy Law we find �using Eq. �39�� is

�v� =
�0b

2
� 1

2�0

1

X
� tan−1 X

X
−

1

X2 + 1
	 +

X

3�1
� . �56�

It appears that dV /dG is negative for a certain range of pres-
sure gradient. We consider an experimental situation in
which a gas is pushing this shear-thickening GNF imposing a
pressure gradient G2 corresponding to negative values of
dV /dG. We find in Eq. �38� a purely imaginary amplification
rate for any wave vector k. The important result is that the
amplification rate is never positive; the interface is always
stable.

We have taken the example of a particular shear-
thickening fluid described by Eq. �55�. We have taken this
example because Eq. �55� is probably one of the simplest
ones for a shear-thickening fluid with a nonmonotonic flow
curve for which it is easy to compute V.

This result can be generalized for any fluid whose shear
thickening is high enough. The important result is a gas can
force a viscous fluid with a sable interface. The conditions
are follows.

�1� The viscous fluid is highly shear thickening.

�2� The pressure gradient is in the range where V is nega-
tive.

This is an unexpected prediction that may have many im-
plications for industrial processes. It now needs to be experi-
mentally tested.

V. CONCLUDING REMARKS

We have developed a theory predicting the growth rate of
normal modes for any GNF. This theory fills up a lack; the
existing analytical theories only consider weakly nonlinear
fluids. Our approach enables us to predict new effects, for
instance, the stabilization of the air-liquid front in a Hele-
Shaw cell in the case of some shear-thickening fluids. It
should be interesting to test experimentally this prediction.

Another extension to this work should be to consider the
case of viscoelastic fluids with long relaxation times. Two
decades ago Wilson �14� proposed a theory that could be
improved nowadays thanks to the developments of new ana-
lytical methods. This is precisely a subject of current interest,
for instance, very recent experimental results show unex-
pected behaviors that are not yet elucidate �27�.
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APPENDIX

In this appendix we explain in detail the cases for which
both or only one � j

2 is negative

1. Both �j
2�0

First at all let us suppose that we have

dV j

dGj
� 0 for j = 1,2, �A1�

thus � j
2 is negative in Eq. �22� and we can introduce � j

2 as

� j
2 = �Gj

V j

dV j

dGj
� , �A2�

such that � j
2=−� j

2 and Aj�x , t� satisfies

� j
2�2Aj�x,t�

�x2 + k2Aj�x,t� = 0. �A3�

Aj�x , t� can be obtained using the method of normal modes
�28�. So, we look for an Aj�x , t� in the form

Aj�x,t� = qj cos�kjx + St� + rj sin�kjx + St� , �A4�

with qj and rj as two arbitrary constants to be determined
using initial condition and S as an arbitrary complex constant
given the time evolution of the normal mode,

.

b
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FIG. 5. Top: stress � as a function of the shear rate ̇ for a
highly shear-thickening fluid, calculated from Eq. �55� with �1

=20�0. Bottom: generalized Darcy’s law for this fluid �average ve-
locity as a function of G�. Note the range of G for which �v�
decreases as G increases.
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S = � + iM . �A5�

The equation for Aj�x , t� determines kj,

kj =
k

� j
, �A6�

where k �real� is the wave number of the pressure perturba-
tion in y. Through the change in variables from �qj ,rj� to
�aj ,bj�,

rj

qj
= − tan�bj�, rj

2 + qj
2 = aj

2, �A7�

we can bring the solution Aj�x , t� into the form

Aj�x,t� = aj cos�kjx + St + bj� , �A8�

with aj ,bj as constants. The continuity of the normal com-
ponents of the velocity at the interface determine ���y ; t�,

���y ;t� = �X�t�cos�ky� , �A9�

with X�t� in this case is given by

X�t� =
− a1k

S
cos�St + k1�0 + b1��� V1

G1�
�� dV1

dG1
�

=
− a2k

S
cos�St + k2�0 + b2��� V2

G2�
�� dV2

dG2
� . �A10�

Finally the Laplace law allows us to determine S. It reads

S = � + i0 = � =
�G1 − G2 + k2�k

��G2

V2
�� dG2

dV2
� − ��G1

V1
�� dG1

dV1
�
. �A11�

Since M =0 we have in this case a mode said to be neutrally
stable which oscillates with frequency �. So, we have nei-
ther Aj�x , t� nor the corresponding perturbed pressures
Pj

��x ,y , t� going to zero for x→ 	
. They are oscillatory.
The whole disturbed pressure is a Fourier superposition of
oscillatory normal modes such as

Pj
��x,y,t� = Aj�x,t� = aj cos�kjx + St + bj� . �A12�

Nevertheless if we want a disturbed pressure going to zero
for x→ 	
, it can be obtained by imposing to the Fourier
kernel appropriated initial and/or boundary conditions.

2. Mixed cases

Now we consider the mixed cases �1
2�0, �2

2�0 and �1
2

�0, �2
2�0.

a. �1
2�0, �2

2�0

These values of �1
2 and �2

2 bring to two different solutions
A of Eq. �22�: A1 and A2. A1 satisfies

A1�x,t� = C�t�exp� k�x − �0�
�1


 for �x − �0� → − 
 ,

�A13�

with C�t� as a function of t to be determined and where we
have chosen one of the integration constant equal to �0. A2
satisfies

A2�x,t� = a2 cos�k2x + S2t + b2� for x → + 
 , �A14�

with a2 and b2 as arbitrary constants,

k2 =
k

�2
, �2

2 = − �2
2 = �G2

V2
�� dV2

dG2
� , �A15�

and

S2 = �2 + iM2. �A16�

The continuity of the normal components of the velocity at
the interface determine ���y ; t�,

���y ;t� = �X�t�cos�ky� , �A17�

with X�t�,

X�t� = −
k

�1
��t

C�t��dt�
 dV1

dG1
=

− a2k2

S2
cos�S2t�� dV2

dG2
	 .

�A18�

The Laplace equation gives �eliminating X�t� and C�t� using
Eq. �A18��

cos�S2t��1 +
G1 − G2 + k2

S2
�� V2

G2
�� dV2

dG2
�


= ��G1

V1

dG1

dV1
�� V2

G2
�� dV2

dG2
�
sin�S2t� . �A19�

Finally separating the real and imaginary parts of Eq. �A19�
we have

�2 =
�G2 − G1 − k2�k

��G2

V2
�� dG2

dV2
� +

G1

V1

dG1

dV1
�� V2

G2
�� dV2

dG2
�
, �A20�

M2 =
�G2 − G1 − k2�k

�G2

V2
�� dG2

dV2
�� V1

G1

dV1

dG1
+ �G1

V1

dG1

dV1

. �A21�

b. �1
2�0, �2

2�0

This case is treated in a similar way and we obtain for

S3 = �3 + iM3, �A22�

with

�3 =
�G1 − G2 + k2��� V1

G1� ��
dV1

dG1
�

1 +
G2

V2

dG2

dV2
� V1

G1
�� dV1

dG1
�

. �A23�

M3 =
�G2 − G1 − k2��� V1

G1� ��
dV1

dG1
�

��G1

V1
�� dG1

dV1
� V2

G2

dV2

dG2
+ �G2

V2

dG2

dV2
� V1

G1
�� dV1

dG1
�
. �A24�
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